9 research outputs found

    Ultra-Portable Field Transfer Radiometer for Vicarious Calibration of Earth Imaging Sensors

    Get PDF
    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector-and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods

    Landsat 9 TIRS-2 Performance Results Based on Subsystem-Level Testing

    Get PDF
    Landsat 9 is the next in the series of Landsat satellites and has a complement of two pushbroom imagers: Operational Land Imager-2 (OLI-2) that samples the solar reflective spectrum with nine channels and Thermal Infrared Sensor-2 (TIRS-2) samples the thermal infrared spectrum with two channels. The first builds of these sensors, OLI and TIRS, were launched on Landsat 8 in 2013 and Landsat 9 is expected to launch in December 2020. TIRS-2 is designed and built to continue the Landsat data record and satisfy the needs of the remote sensing community. There are two sets of requirements considered for planning the component, subsystem and instrument level tests for TIRS-2: performance requirements and Special Calibration Test Requirements (SCTR). The performance requirements specify key spectral, spatial, radiometric, and operational parameters of TIRS-2 while the SCTRs specify parameters of how the instrument is tested. Several requirements can only be verified at the instrument level, but many performance metrics can be assessed earlier in prelaunch testing at the subsystem level. A test program called TIRS Imaging Performance and Cryoshell Evaluation (TIPCE) was developed to characterize TIRS-2 spectral, spatial, and scattered-light rejection performance at the telescope and detector subsystem level. There were three thermal vacuum campaigns in TIPCE that occurred from November 2017 to March 2018. This work shows results of TIPCE data analysis which provide confidence that key requirements will be met at instrument level with a few minor waivers. A full complement of performance testing will be done at the TIRS-2 instrument level for final verification in late 2018 through Spring 2019

    Landsat 9 Thermal Infrared Sensor 2 Architecture and Design

    Get PDF
    The Thermal Infrared Sensor 2 (TIRS-2) will fly aboard the Landsat 9 spacecraft and leverages the Thermal Infrared Sensor (TIRS) design currently flying on Landsat 8. TIRS-2 will provide similar science data as TIRS, but is not a buildto-print rebuild due to changes in requirements and improvements in absolute accuracy. The heritage TIRS design has been modified to reduce the influence of stray light and to add redundancy for higher reliability over a longer mission life. The TIRS-2 development context differs from the TIRS scenario, adding to the changes. The TIRS-2 team has also learned some lessons along the way

    NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    Get PDF
    Abstract: The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (~1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT’s data processing and distribution system is designed to give scientists open access to both low- and high-level data product
    corecore